

Boosting two communications satellites into orbit

For its second launch of the year Arianespace will boost two communications satellites into orbit: Astra 1L for the Luxembourg-based operator SES Astra, and Galaxy 17 for the international operator Intelsat.

Through proven reliability and availability, Arianespace and Ariane continue to set the launch service standard for the world's leading space communications operators.

Astra 1L is the ninth SES Astra satellite to be launched by Arianespace. SES Astra is the leading direct-to-home (DTH) broadcast system in Europe, serving more than 109 million households via DTH and cable networks.

Built by Lockheed Martin Commercial Space Systems (LMCSS) using an A2100 AX platform, Astra 1L will weigh about 4,500 kg at launch. It is equipped with 29 Ku-band active transponders and 2 Ka-band active transponders. Astra 1L will be positioned at 19.2 degrees, and provide high-power satellite services across Europe. Its design life is approximately 15 years.

Galaxy 17 is the 38th Intelsat satellite to use an Ariane launcher since 1983. More than 60% of the Intelsat satellites in service today were orbited by the European launch vehicle.

Built by Thales Alenia Space using a Spacebus 3000 B3 platform, Galaxy 17 is designed to provide television and telephony services for North America. Weighing about 4,100 kg at launch, it is fitted with 24 Ku-band and 24 C-band transponders. Its design life is 15 years.

- 1 The ARIANESPACE mission
- 2 Range operations campaign: ARIANE 5
- 3 Launch countdown and flight events
- 4 Flight Trajectory
- 5 The ARIANE 5 launch vehicle
- 6 The ASTRA 1L satellite
- 7 The GALAXY 17 satellite

Appendix

- 1. Flight Key personnel
- 2. Launch environment conditions
- 3. Synchronized sequence
- 4. ARIANESPACE, its relations wich ESA and CNES

1. Mission profile

The 176th Ariane launch will boost two communications satellites into orbit: Astra 1L for the Luxembourgbased operator SES Astra, and Galaxy 17 for the international operator Intelsat.

This will be the 32nd Ariane 5 launch.

The launcher will be carrying a total payload of 9,405 kg, including 8,600 kg for the two satellites, which will be released separately into their targeted orbits.

The launch will be from Ariane Launch Complex No. 3 (ELA 3) in Kourou, French Guiana.

Injection orbit

Perigee altitude	250 km
Apogee altitude	35 952 km at injection
Inclination	6° degrees

The lift-off is scheduled on the night of May 3 to 4, 2007 as soon as possible within the following launch window:

Launch opportunity

	Universal time (GMT)	Paris time	Washington time	Kourou time
Between	10:29 pm	00:29 am	06:29 pm	07:29 pm
and	11:13 pm	01:13 am	07:13 pm	08:13 pm
on	May 3, 2007	May 4, 2007	May 3, 2007	May 3, 2007

Ariane payload configuration

The Astra 1L satellite was built by Lockheed Martin Commercial Space Systems (LMCSS) in Sunnyvale, California for the Luxembourg-based operator SES Astra. *Orbital position: 19.2° East.*

The Galaxy 17 satellite was built by Thales Alenia Space in Cannes, France for the international operator Intelsat. Orbital position: 91° West (or 99° West)

2. Range operations campaign: ARIANE 5 - ASTRA 1L/GALAXY 17

Satellites and launch vehicle campaign calendar

Ariane activities	Dates	Satellites activities
Campaign start review	March 7, 2007	
EPC Erection	March 7, 2007	
EAP transfer and positionning	March 8, 2007	
Integration EPC/EAP	March 9, 2007	
ESC-A Erection	March 14, 2007	
Integration equipement bay	March 15, 2007	
	March 23, 2007	Arrival in Kourou and begining of ASTRA 1L preparation campaign in building S5 C $$
	March 28, 2007	Arrival in Kourou and begining of GALAXY 17 preparation campaign in building S5 C $$
Roll-out from BIL to BAF	April 10, 2007	
	April 6-10, 2007	ASTRA 1L filling operations in S5A building
	April 16-17, 2007	GALAXY 17 filling operations in S5B building

Satellites and launch vehicle campaign final calendar

J-10	Tuesday, April 17	ASTRA 1L integration on adaptor (ACU)
J-9	Wednesday, April 18	ASTRA 1L transfer to Final Assembly Building (BAF)
J-8	Thursday, April 19	ASTRA 1L integration on Sylda and GALAXY 17 integration on adaptor
J-7	Friday, April 20	Fairing integration on Sylda
J-6	Monday, April 23	GALAXY 17 transfer to Final Assembly Building (BAF) - GALAXY 17 integration on launcher
J-5	Tuesday, April 24	Upper composite integration with ASTRA 1L on launcher
J-4	Wednesday, April 25	ESC-A final preparations and payloads control
J-3	Thursday, April 26	Launch rehearsal
J-3 bis	Friday, April 27	Arming of launch vehicle
J-2	Monday, April 30	Launch readiness review (RAL) and final preparation of launcher
J-1	Wednesday, May 2	Roll-out from BAF to Launch Area (ZL), launch vehicle connections
		and filling of the EPC liquid Helium sphere
J-0	Thursday, May 3	Launch countdown including EPC and ESC-A filling with liquid oxygen and liquid hydrogen

3. Launch countdown and flight events

The countdown comprises all final preparation steps for the launcher, the satellites and the launch site. If it proceeds as planned, the countdown leads to the ignition of the main stage engine, then the two boosters, for a liftoff at the targeted time, as early as possible in the satellites launch window.

The countdown culminates in a synchronized sequence (see appendix 3), which is managed by the control station and onboard computers starting at T-7 minutes.

If an interruption in the countdown means that T-O falls outside the launch window, then the launch will be delayed by one, two or more days, depending on the problem involved, and the solution developed.

Time		Events
– 11 h	30 mn	Start of final countdown
– 7 h	30 mn	Check of electrical systems
– 4 h	50 mn	Start of filling of main cryogenic stage with liquid oxygen and hydrogen
– 3 h	20 mn	Chilldown of Vulcain main stage engine
– 1 h	10 mn	Check of connections between launcher and telemetry, tracking and command systems
	– 7 mn 00 s	"All systems go" report, allowing start of synchronized sequence
	– 4 mn 00 s	Tanks pressurized for flight
	– 1 mn 00 s	Switch to onboard power mode
	- 05,5 s	Command issued for opening of cryogenic arms
	- 04 s	Onboard systems take over
	- 03 s	Unlocking of guidance systems to flight mode

НО	Ignition (of the cryogenic main stage engine (EPC)	ALT (km)	V. rel. (m/s)
	+ 7,0 s	Ignition of solid boosters	0	0
	+ 7,3 s	Liftoff	0	0
	+ 12,5 s	End of vertical climb and beginning of pitch rotation (10 seconds duration	n) 0.94	36
	+ 17 s	Beginning of roll manoeuvre	0.337	74
+ 2 mn	20 s	Jettisoning of solid boosters	66.6	1988
+ 3 mn	11 s	Jettisoning of fairing	105.1	2203
+ 7 mn	36 s	Acquisition by Natal tracking station	169.0	5062
+ 8 mn	57 s	Shut-down of main cryogenic stage	166.3	6875
+ 9 mn	03 s	Separation of main cryogenic stage	166.4	6902
+ 9 mn	07 s	Ignition of upper cryogenic stage (ESC-A)	167.1	6904
+ 13 mn	41 s	Acquisition by Ascension tracking station	155.2	7574
+ 18 mn	18 s	Acquisition by Libreville tracking station	181.5	8330
+ 23 mn	20 s	Acquisition by Malindi tracking station	440.2	9130
+ 24 mn	58 s	Shut-down of ESC-A / Injection	622.6	9878
+ 27 mn	15 s	Separation of ASTRA 1L satellite	956.0	9104
+ 29 mn	36 s	Separation of Sylda 5	1378.1	8775
+ 32 mn	54 s	Separation of GALAXY 17 satellite	2076.0	8281
+ 41 mn	03 s	End of Arianespace Flight mission	4067.2	4879

4. Flight trajectory

The launcher's attitude and trajectory are totally controlled by the two onboard computers, located in the Ariane 5 vehicle equipment bay (VEB).

7.05 seconds after ignition of the main stage cryogenic engine at T-0, the two solid-propellant boosters are ignited, enabling liftoff. The launcher first climbs vertically for 6 seconds, then rotates towards the East. It maintains an attitude that ensures the axis of the launcher remains parallel to its velocity vector, in order to minimize aerodynamic loads throughout the entire atmospheric phase, until the solid boosters are jettisoned.

Once this first part of the flight is completed, the onboard computers optimize the trajectory in real time, minimizing propellant consumption to bring the launcher first to the intermediate orbit targeted at the end of the main stage propulsion phase, and then the final orbit at the end of the flight of the cryogenic upper stage. The main stage falls back off the coast of Africa in the Atlantic Ocean (in the Gulf of Guinea).

On orbital injection, the launcher will have attained a velocity of approximately 9878 meters/second, and will be at an altitude of about 623 kilometers.

The fairing protecting the ASTRA 1L/GALAXY 17 spacecraft is jettisoned shortly after the boosters are jettisoned at about T+191 seconds.

Standard Ariane 5 trajectory for geostationary transfer orbit

5. The Ariane 5-ECA (Industrial prime contractor: ASTRIUM SpaceTransportation)

6. The ASTRA 1L satellite

Customer	SES ASTRA		
Prime contractor	Lockheed Martin Commercial Space Systems (LMCSS)		
Mission	HD direct broadcast satellite		
Mass	Total mass at lift-off 4 497.5 kg		
	Dry mass	2 253 kg	
Stabilization	3 axis stabilized		
Dimensions	7.7 x 2.62 x 3.62 m		
Span in orbit	27 m		
Platform	A2100 AX		
Payload	29 Ku band active transponders + 2 Ka band active transponders		
On-board power	11 KW (end of life)		
Life time	15 years		
Orbital position	19.2° East		
Coverage area	Europe		

Press Contact

Markus Payer SES Astra VP Media Relations Tél : +352 710 725 500 E-mail : markus.payer@ses-astra.com

7. The GALAXY 17 satellite

Customer	INTELSAT		
Prime contractor	Thales Alenia Space		
Mission	Television and Telecommunications satellite		
Mass	Total mass at lift-off	4 100 kg	
	Dry mass	1 749 kg	
Stabilization	3 axis stabilized		
Dimensions	3.75 x 1.8 x 2.3 m		
Span in orbit	36.9 m		
Payload	24 C band transponders and 2	24 Ku band transponders	
On-board power	8.6 KW (end of life)		
Life time	15 years minimum		
Orbital position	91° West or 99° West		
Coverage area	North America		

Press Contact:

Nick Mitsis Senior Manager, Corporate Communications INTELSAT 3400 International DR. NW Washington, DC 20008 Tél. : +1 (202) 944 7044 E-mail : nick.mitsis@intelsat.com

Appendix 1. Arianespace ASTRA 1L/GALAXY17 launch key personnel

In charge of the launch campaign					
Mission Director	(CM)	Philippe ROLLAND	ARIANESPACE		
In charge of the launch service contract					
Ariane Payload Manager	(RCUA)	Christophe BARDOU	ARIANESPACE		
Ariane Deputy Mission Manager	(RCUA/A)	Alexandre MADEMBA-SY	ARIANESPACE		
In charge of ASTRA 1L satellite					
Satellite Mission Director	(DMS)	Martin HALLIWELL	SES ASTRA		
System Program Manager	(CPS)	Rick STARKOVS	SES ASTRA		
Satelitte Preparation Manager	(RPS)	Roy WELLER	LMCSS		
In charge of GALAXY 17 satellite					
Satellite Mission Director	(DMS)	Richard LAURIE	INTELSAT		
Satellite Program Manager	(CPS)	Richard MACARIO	INTELSAT		
Satellite Preparation Manager	(RPS)	Jean-Pierre PROST	THALES ALENIA SPACE		
In charge of the launch vehicle					
Launch Site Operations Manager	(COEL)	Jean-Pierre BARLET	ARIANESPACE		
Ariane Production Project Manager	(CPAP)	Bernard DONAT	ARIANESPACE		
In charge of the Guiana Space Center (CSG)					
Range Operations Manager	(DDO)	Thierry VALLEE	CNES/CSG		
Flight Safety Officer	(RSV)	Hervé POUSSIN	CNES/CSG		

Appendix 2. Launch environment conditions

Acceptable wind speed limits at lift-off range from between 7.5 m/s to 9.5 m/s according to the wind direction. The most critical is a northerly wind. For safety reasons, the wind's speed on the ground (Kourou), and at a high altitude (between 10,000 and 20,000 m) is also taken into account.

Appendix 3. The synchronized sequence

The synchronized sequence starts 7 mn beforre ignition (T-0), it is primarily designed to perform the final operations on the launcher prior to launch, along with the ultimate checks needed following switchover to flight configuration. As its name indicates, it is fully automatic, and is performed concurrently by the onboard computer and by two reduntant computers at the ELA 3 launch complex until T-4 seconds.

The computers command the final electrical operations (startup of the flight program, servocontrols, switching from ground power supply to onboard batteries, etc.) and associated checks. They also place the propellant and fluid systems in flight configuration and perform associated checks. In addition, it handles the final ground system configurations, namely:

- Startup of water injection in the flame trenches and jet guide (T-30 sec).
- Hydrogen aspiration for chilldown of the Vulcain engine in the jet guide (T-18 sec).
- Burnoff of hydrogen used for chilldown (T-5.5 sec).

At T-4 seconds, the onboard computer takes over control of final engine startup and lift-off operations:

- It starts the ignition sequence for the Vulcain main stage engine (T-0).
 - It checks engine operation (from T+4.5 to T+7.3 sec).
 - It commands ignition of the solid boosters for immediate lift-off at T+7.3 seconds.

Any shutdown of the synchronized sequence after T-7 mn automatically places the launcher back in its T-7 min configuration.

Appendix 4. Arianespace, its relations with ESA and CNES

From a production base in Europe, Arianespace, a private company, serves customers all over the world.

Arianespace is the world's first commercial space transportation company, created in 1980 by 36 leading European aerospace and electronics corporations, 13 major banks and the French space agency CNES (Centre National d'Etudes Spatiales).

The shareholder partners in Arianespace represent the scientific, technical, financial and political capabilities of 12 countries: Belgium, Denmark, Germany, France, Great Britain, Ireland, Italy, Netherlands, Norway, Spain, Switzerland and Sweden.

In order to meet the market needs, Arianespace is present throughout the world: in Europe, with its head office located near Paris, France at Evry, in North America with its subsidiary in Washington D.C. and in the Pacific Region, with its representative offices in Tokyo, Japan, and in Singapore. Arianespace employs a staff of 250. Share capital totals $395,010 \in$.

Arianespace is in charge of these main areas:

• markets launch services to customers throughout the world ;

• finances and supervises the construction of Ariane expendable launch vehicle ;

• conducts launches from Europe's Spaceport of Kourou in French Guiana.

Personalized reliable service forms an integral part of Arianespace launch package. It includes the assignment of a permanent team of experts to each mission for the full launch campaign.

Today, Arianespace's offer is mainly based on Ariane 5. With its proven experience, demonstrated business model and unquestioned credibility, Arianespace has been committed for more than 24 years to providing its customers - satellite operators around the world - a technically and economically reliable means offer to place their satellites on the targeted orbit at the right moment. This offer is strengthened by the flexibility provided by the three launcher fleet - Ariane 5, Soyuz and Vega - and by the Launch Services Alliance, which gives customers mission back-up aboard alternative launch systems.

Relations between ESA, CNES and ARIANESPACE

Development of the Ariane launcher was undertaken by the European Space Agency in 1973. ESA assumed overall direction of the ARIANE 1 development program, delegating the technical direction and financial management to CNES. The ARIANE 1 launcher was declared qualified and operational in January 1982. At the end of the development phase which included four launchers, ESA started the production of five further ARIANE 1 launchers. This program, known as the "promotion series", was carried out with a management arrangement similar to that for the ARIANE 1 development program.

In January 1980 ESA decided to entrust the commercialization, production and launching of operational launchers to a private-law industrial structure, in the form of ARIANESPACE company, placing at its disposal the facilities, equipment and tooling needed of producing and launching the ARIANE launchers. ARIANE follow-on development programs have been undertaken by ESA since 1980. They include a program for developing updated versions of the launcher: Ariane 2 and Ariane 3 (qualified in August 1984) ; the program for building a second ARIANE launch site (ELA 2) (validated in August 1985) ; the Ariane 4 launcher development program (qualified on June 15th, 1988) ; and the preparatory and development program of the Ariane 5 launcher and its new launch facilities: ELA 3 (qualified on November, 1997). All these programs are run under the overall direction of ESA, which has appointed CNES as prime contractor. In general, as soon as an updated version of the launcher has been qualified 5 oct, 1998, ESA makes the results of the development program together with the corresponding production and launch facilities available to ARIANESPACE. ESA is responsible (as design authority) for development work on the Ariane launchers. The Agency owns all the assets produced under these development programs. It entrusts technical direction and financial management of the development work to CNES, which writes the program specifications and places the industrial contracts on its behalf. The Agency retains the role of monitoring the work and reporting to the participating States.

Since Flight 9 Arianespace has been responsible for building and launching the operational Ariane launchers (as production authority), and for industrial production management, for placing the launcher manufacturing contracts, initiating procurements, marketing and providing Ariane launch services, and directing launch operations.

The Guiana Space Center: Europe's Spaceport

For over 30 years, the Guiana Space Center (CSG), Europe's Spaceport in French Guiana, has offered a complete array of facilities for rocket launches. It mainly comprises the following:

• CNES/CSG technical center, including various resources and facilities that are critical to launch bas operation, such as radars, telecom network, weather station, receiving sites for launcher telemetry, etc.

• Payload processing facilities (ECPU), in particular the new S5 facility.

• Ariane launch complexes (ELA), comprising the launch zone and launcher integration buildings.

• Various industrial facilities, including those operated by Regulus, Europropulsion, Air Liquide Spacial Guyane and EADS, which contribute to the production of Ariane 5 elements. A total of 40 European manufacturers and local companies are involved in operations.

Europe's commitment to independent access to space is based on actions by three key players: the European space Agency (ESA), French space agency CNES and Arianespace.

ESA has helped change the role of the Guiana Space Center, in particular by funding the construction of the launch complexes, payload processing buildings and associated facilities. Initially used for the French space program, the Guiana Space Center has gradually become Europe's own spaceport, according to the terms of an agreement between ESA and the french government.

To ensure that the Spaceport is available for its programs, ESA takes charge of the lion's share of CNES/CSG fixed expenses, and also helps finance the fixed costs for the ELA launch complexes.

French space agency CNES plays several roles at the Space Center.

• It designs all infrastructures and, on behalf of the French government, is responsible for safety and security.

• It provides the resources needed to prepare the satellites and launcher for missions.

Whether during tests or actual launches, CNES is also responsible for overall coordination of operations. It collects and processes all data transmitted from the launcher via a network of receiving stations, to track Ariane rockets throughout their trajectory.

In French Guiana, Arianespace is the contracting authority in charge of operating the family of three launchers, Ariane, Soyuz and Vega.

For the Ariane launcher, Arianespace: calls on Astrium Space Transportation, launcher integration prime contractor, for all launcher integration and functional checks in the Launcher Integration Building (BIL), coordinates satellite preparation in the Payload Preparation Complex (EPCU), operated by the Guiana Space Center (CSG), handles final assembly of the launcher and integration of satellites in the Final Assembly Building (BAF), handles transfer of the launcher to Launch Zone No. 3, then oversees final countdown and launch from Launch Center No. 3.

Arianespace has created a top-flight team and array of technical resources to get launchers and satellites ready for their missions. Building on this unrivalled expertise and outstanding local facilities, Arianespace is now the undisputed benchmark in the global launch services market.