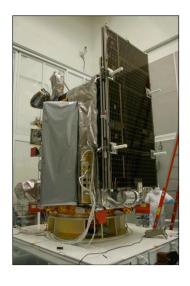


Lunar Reconnaissance Orbiter(LRO) Mission Overview



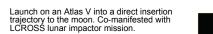
LRO Mission Objectives

Richard Vondrak LRO Project Scientist NASA GSFC

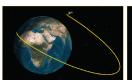
Slide - 1

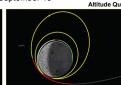
Hydrogen/water at the lunar Continuous solar energy

Mineralogy


- High resolution imagery
- Global geodetic grid
- Neutrons
- Topography Rock abundances

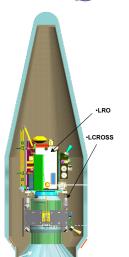
Energetic particles


Slide - 2



LRO Mission Overview

- On-board propulsion system used to capture at the moon, insert into and maintain 50 km mean altitude circular polar orbit.
- 1 year exploration mission followed by handover to NASA Science Mission Directorate.
- Orbiter is 3-axis stabilized, nadir pointed, operates continuously during the primary
- Data products delivered to Planetary Data Systems (PDS).
- Launched on June 18, 2009
- Began Exploration orbit on September 15

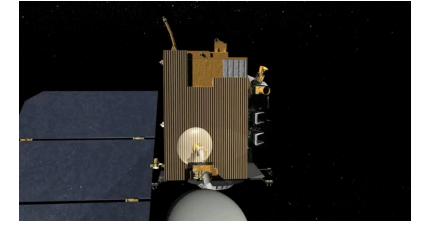


Polar Mapping Phase, 50 km Altitude Circular Orbit, ·At least 1 Year

·Commissioning Phase, 30 x 216 km Altitude Quasi-Frozen Orbit, Up to 60

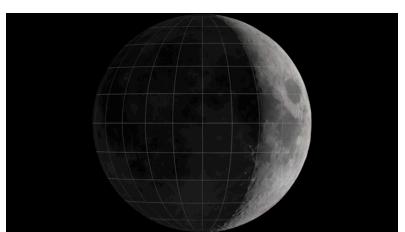
LRO Instruments and **Investigations**

LRO Instruments



LRO has robust and resilient capabilities

	<u>Objectives</u>	LRO Requirements	Contributing Instruments
1	Find Safe Landing Sites	M30 M40 – Global geodetic grid 10 cm vertical, and at the poles, 50 m horizontal resolution	LOLA, LROC
		M80 - Identify surface features & hazards	LROC, LOLA, DLRE
2	Locate Potential Resources	M50 – Provide lunar temperature map from 40 - 300K, 5 K precision over full diurnal cycle.	DLRE
		$M60-Image\ the\ permanently\ shadowed\ regions.$	LAMP, LOLA
		M70 - Identify putative deposits of water-ice	LAMP,LEND, LOLA
		M90 – Characterize the polar region illumination environment	LROC, LOLA, DLRE
		M100 - Characterize lunar mineralogy	LROC, DLRE
		M110 - Hydrogen mapping	LEND
3	Life in the Space Environment	M10 - Characterize the deep space radiation environment at energies in excess of 10 MeV	CRaTER, LEND
		M20 - measure the deposition of deep space radiation on human equivalent tissue.	CRaTER
4	New Technology	P160 - Technology demo	Mini-RF



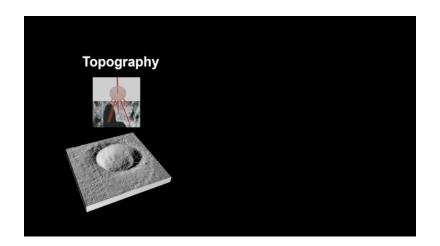
5

NASA

Lunar Mapping

Lunar Resources

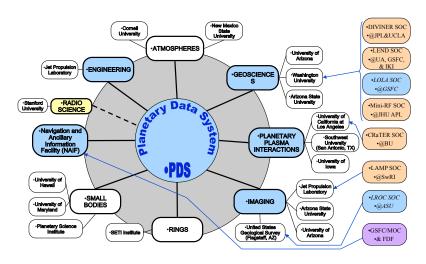
7


Safe Landing Sites

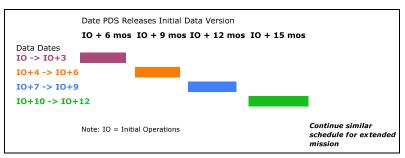
•LRO Recent Events

Launch
Orbit Insertion
Instrument Activation Complete
July 8
Commissioning Begins
Mission Orbital Insertion
LCROSS Impact
Polar Solstice Campaign
July 9
Sept. 15
Oct. 9
Oct. 18

NASA


LRO & LCROSS Impact

LRO SOCs & PDS Nodes/Subnodes/ Data Nodes



LRO Data Delivery Schedule

SOCs deliver 3-6 month old, validated, initial version of LRO data to PDS every 3 months, starting 6 months after Initial Operations on 9/15/09.

Notes:

1)Subsequent versions and derived data products due to PDS in next 3-month delivery after creation and validation. 2)Creation of subsequent versions and derived data products is on a time scale commensurate with the level of data processing required.

3)Final data processing and release can not exceed 6 months from end of primary mission or extended mission, as applicable.

Slide - 13

•LRO Future Events

After 1 year of operation to accomplish Exploration objectives, LRO will be operated by NASA's Science Mission Directorate

- LRO instrument suite has strong planetary science heritage
- Measurement capabilities align with lunar science goals that were identified by the NRC Decadal Survey and SCEM reports
- SMD mission might stay in the 50-km orbit or move to a transition orbit (e.g. more complete coverage over the moon's lower latitudes).
- Eventually LRO will be placed in a more stable orbit (30 x 216 km) for prolonged operations.
- Spacecraft operations may differ from ESMD mission (e.g. limb views)
- SMD plans to provide funding for the LRO Principal Investigators and their teams, as well as other researchers
- All LRO data products will be delivered to the Planetary Data System within six months for use by the scientific community

More information

About LRO:

http://www.nasa.gov/lro

 To contact the LRO Project Scientist: richard.vondrak@nasa.gov