

EarthCARE

The Earth Cloud, Aerosol and Radiation Profiling Satellite Mission

M. Eisinger, T. Wehr, A. Lefèbvre, D. Maeusli, K. Wallace, J. Pereira do Carmo, R. Koopman, A. Hélière, D. Lajas

European Space Agency

ATMOS 2018 conference, Salzburg, Austria, 26 Nov 2018

ESA's 6th Explorer mission implemented in cooperation with JAXA

Mission objective:
Understanding of cloud-aerosolradiation interactions so as to include
them correctly and reliably in climate
and NWP models

A. J. Illingworth et al.

The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation

http://journals.ametsoc.org/doi/pdf/10.1175/BAMS-D-12-00227.1

Required Global Observations:

- Vertical profiles of natural and anthropogenic aerosols, their radiative properties and interaction with clouds
- Vertical distributions of atmospheric liquid water and ice, their transport by clouds and their radiative impact
- Cloud distribution ('cloud overlap'), cloud-precipitation interactions and characteristics of vertical motions within clouds
- Estimates of radiative heating profiles and fluxes
- Calculated TOA radiance and flux^{*} ↔ observed TOA radiance and flux *from retrieved 3-dim cloud-aerosol profiles

Temperature and humidity from operational analysis

ESA UNCLASSIFIED – For Official Use

EarthCARE Payload & Level 1 Products

HSR Lidar

λ=355nm: Rayleigh, Mie, depol. channels Level 1: attenuated backscatter profiles

94GHz Radar, with Doppler (JAXA/NICT)

Level 1: Reflectivity and Doppler profiles

Multi-spectral Imager:

4 solar + 3 thermal IR channels Level 1: TOA radiances and brightness temperatures in 7 spectral bands

Broad-band Radiometer:

3 fixed FoV

Level 1: Solar and thermal TOA radiances (filtered, unfiltered as Level 2 product)

The Cloud Profiling Radar – CPR

- High power W-band (94GHz), nadir-pointing
- Doppler capability
- Antenna aperture 2.5 m
- Variable PRF: 6100-7500 Hz
- Sensitivity at least -35 dBZ at 20 km height
- Sampling: 500 m horizontal, 100 m vertical
- Vertical range 16–20 km as function of latitude.
 Lower vertical range → higher PRF → better Doppler
- -3dB beamwidth = 0.09° → effective footprint on ground = 750m x 1000m

*

- Instrument: 321 W, 270 kg, 265 kbps
- Level 1 product: reflectivity & Doppler profiles

esa

CPR

ov 2018 | Slide 8

ropean Space Agency

Atmospheric Lidar – ATLID

- Atmospheric Lidar laser wavelength $\lambda = 355$ nm, lin. pol.
- Radiator High Spectral Resolution Lidar (HSRL) using Fabry-Perot etalon centred on the laser centre wavelength → separates molecular from particle_{M1} backscatter signals (lidar ratio measured) **M2**
- 3 channels receiver:
 - Rayleigh scatter
 - co-polar Mie
 - cross-polar
- Main products are profiles of
 - molecular backscatter signal
 - cloud and aerosol backscatter signal, co-polar
 - cloud and aerosol backscatter signal, cross-polar
 - extinction
- Sampling: along-track 290m (2x integrated), vertical 103m (up to 20km)

Telescope

Struts

Main plate

Mass: 558 kg, Power: 585 W, Data rate < 660 kb/s

Power Laser Head (PLH)

> Beam-Expander (E-BEX)

Telescope support baseplate (TSB)

Emission baffle

Industry: Airbus (F) + Selex ES (I)

ATLID Stable Structure Assembly (SSA) and equipments

ATLID

+

ATLID

Salzburg, Austria, 26 Nov 2018 | Slide 11

Multi-Spectral Imager - MSI

Objective:

To provide contextual imagery information to support the retrievals of geophysical parameters by the active instruments onboard EarthCARE

Characteristics:

150 km swath (-35km to +115 km) 500 m ground sampling distance 57 W, 60 kg, 652 kbps

Level 1 product: radiances (VNS) & brightness temperatures (TIR)

Industry: SSTL (UK) + TNO (NL)

Signal to noise **VIS/NIR 70-500** SWIR 20-250 Noise (NEDT)

TIR 0.25-0.80 K

SWIR-2 radiator TIR **VNS** Sun Baffle

Channel	Centre Wavelength [µm]	Bandwidth (50%) [μm]
VIS	0.67	0.02
NIR	0.865	0.02
SWIR 1	1.65	0.05
SWIR 2	2.21	0.1
TIR 1	8.8	0.9
TIR 2	10.8	0.9
TIR 3	12.0	0.9

MSI

Broad-Band Radiometer – BBR

Three fixed telescopes:

forward (55°), nadir, backward (-55°)

Two channels:

Short-wave (SW) channel 0.25 μ m to 4 μ m Total-wave (TW) channel 0.25 μ m to >50 μ m \rightarrow Long-wave (LW) derived from TW-SW

Abs. accuracy 2.5 (SW) / 1.5 (LW) Wm⁻²sr⁻¹

Spatial resolution nominal 10 km x 10 km

Spatial sampling distance 1 km

48 W, 45 kg, 145 kbps

Products: TOA SW/LW radiances & flux

Industry: TAS (UK) + RAL (UK)

ESA UNCLASSIFIED - For Official Use

3 fixed, single mirror telescopes, each with a linear microbolometer detector array. Chopper drum rotates continuously, chopping the signal between SW, drum & TW views

Calibration drum periodically rotates into view:

- Hot or cold blackbody, every 88s, to calibrate LW
- View to sun diffuser, every 2 months for 30 orbits, to monitor aging in the SW chain

+

BBR

tria, 26 Nov 2018 | Slide 16

European Space Agency

BBR on satellite

alzburg, Austria, 26 Nov 2018 | Slide 17

European Space Agency

Level 2 Developments

- clouds profiles from radar, lidar, imager
- aerosol profiles from lidar, imager
- calculated radiation from retrieved profiles and measured SW, LW
- closure assessment

Campaigns

2016: NAWDEX

incl 355HSRL, 95GHz (F) 532HSRL, 35GHz (D)

Falcon France

Science Preparation

Science Preparation

Building on CloudSat, Calipso, CERES/GERB, MODIS, ground-/air-based radar/lidar, modelling, campaigns ...

Preparation of NWP Assimilation

ECMWF: preparation of radar and lidar assimilation

esa

Joint Mission Advisory Group

Members: Europe, Japan, Canada Observers: USA **Preparation GCM evaluation**

Dedicated data processor (CFMIP-type) development

Validation preparation

- ESA announcement of opportunity (AO) 2017 (EarthCARE only, closed, 32 AO proposals accepted)
- JAXA 2nd research announcement (RA) 2018 (multi-mission including EarthCARE, closing 30 Nov)
- Joint validation workshop before launch

Scientific Workshops

- Kyoto 2009
- Paris 2012, jointly with CloudSat and CALIPSO
- Tokyo 2014
- Bonn 2018: science and validation
 Proceedings and report available online
 <short link goes here if available Rob?>

ESA UNCLASSIFIED - For Official Use

CPR Level 1b (JAXA)

Radar reflectivity and Doppler velocity profiles

CPR Level 2a

Radar echo product, feature mask, cloud type, liquid and ice cloud properties, vertical motion, rain and snow estimates, ...

Products will contain:

Primary parameters, error descriptors, quality flags, configuration information

Product sampling:

Native per instrument or "JSG" (\approx 1km x 1km x 100m) for some ATLID and most synergy products

ATLID Level 1b (ESA)

Attenuated backscatter in

- Rayleigh channel
- Co-polar Mie channel
- Cross-polar Mie channel

ATLID Level 2a

Feature mask and target classification, extinction, backscatter & depolarisation profiles, aerosol properties, ice cloud properties, ...

Target classification, cloud & aerosol profiles at cross-sectn

3D Scenes Construction

Expand syn. retrievals acrosstrack using MSI; ≈40km wide

Radiative Transfer Products calculated radiances, fluxes, heating rate profiles

MSI Level 1b/c (ESA)

TOA radiances for four solar channels, TOA brightness temperatures for three thermal channels

MSI Level 2a

Cloud mask, cloud microphysical parameters, cloud top height, aerosol parameters, ...

Filtered TOA short-wave and total-wave radiances

BBR Level 2a

Unfiltered top-of-atmosphere radiances, short-wave and long-wave fluxes BBR Level 2b: enhanced products using MSI

Assessment Comparison of calculated

fluxes and radiances to BBR observations

Slide 19

EarthCARE Mission Status

- Spacecraft platform integration completed → spacecraft ready for accommodating payload
- BBR completed, calibrated and integrated onto spacecraft in summer 2018
- MSI pre-integrated onto spacecraft in 2018, now back in UK for testing and TIR calibration.
 Delivery and final integration onto spacecraft 2019
- ATLID Optical Flight Model programme near completion.
 Testing, delivery and final integration onto spacecraft 2019
- CPR pre-integrated onto spacecraft in 2017, now back in Japan for refurbishment (repair) of High Power Transmitters (HPTs) and final testing
- Processor, end-to-end simulator (E3SIM) and ground segment development well advanced, integration of individual processors into overall system ongoing
- Spacecraft and ground segment activities currently in bridging phase (reduced teams)
- Launch 2021

S 2018, Salzburg, Austria, 26 Nov 2018 | Slide 22

