

KLEP and KPLO

Korea Aerospace Research Institute

Lunar Exploration Program Office

169-84, Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea

Introduction to Korea Lunar Exploration Program and KPLO Mission

August, 2016

Korea Aerospace Research Institute

KLEP(Korea Lunar Exploration Program) Overview

1st Phase: Korea Pathfinder Lunar Orbiter **Mission**

- Technology demonstration for lunar missions
- Lunar sciences
- New technology demonstration (DTN)
- International cooperation
- Use foreign launch service

- Lunar science payloads
- International payloads
- Space internet (DTN)

Ground Station

- Deep-space antenna
- Tracking and navigation
- Science/Imaging data processing
- TM & TC Operation

2nd Phase: Lunar Orbiter and Lander Mission

- Lunar orbiter, lander mission
- Lunar lander includes a rover
- Use Korean launch vehicle

Lunar Lunar **Orbiter** Lander

- Lunar Resources
- Topography
- Space Environment

- TLI insertion
- 9 550kg to TLI

- Lunar rover technology
- Energy technology(RTG)
- Launch vehicle upper stage technology
- Lunar landing technology

KPLO(Korea Pathfinder Lunar Orbiter) Mission Overview

Program Overview

Goal Enhancement of the lunar exploration technology and science research

Orbit Polar orbit 100km

Mass 550kg Mission lifetime 1 year

Target
Launch date
End of 2018

Main Contents

- System and Bus development
- Building a Ground-station for deep space mission
- Scientific instruments (Domestic/International)
- Space internet demonstration

KPLO Mission Objectives

- Developing indigenous lunar exploration technologies
 - Developing lunar exploration technologies (orbiter bus, lunar orbit insertion, operation, tracking, communication, navigation)
 - Building DSN Ground-station
- 2. Scientific investigation
 - Lunar topography
 - Scientific investigation on lunar environment and resources
- 3. Realizing space new technologies
 - Demonstration Space internet

Top Level System Architecture

KPLO Instruments Summary

- Lunar Terrain Imager (LUTI) LUTI will take images of probable landing sites for the 2nd stage lunar exploration mission and special target sites of the lunar surfaces with a high spatial resolution (<5m)
- Wide-Angle Polarimetric Camera (PolCam) –
 PolCam will acquire the polarimetric images of
 the entire lunar surface except for the polar
 regions with medium spatial resolution in order to
 investigate the detailed characteristics of lunar
 regolith.
 - KPLO Magnetometer (KMAG) KMAG will measure the magnetic strength of the lunar environment (up to ~100km above the lunar surface) with ultra-sensitive magnetic sensors.
- KPLO Gamma Ray Spectrometer (KGRS) –
 KGRS will investigate the characteristics of
 lunar resources including rare elements,
 minerals, etc., and map the spatial distribution
 of the elements.
- Disruption Tolerant Network experiment payload (DTNPL) – DTNPL will take space communication experiment based on disruption tolerant network technology.
- NASA Provided Instrument(s) will be selected through NASA/AO process.

Korean Domestic Instruments

Instrument	Measurement	Exploration Benefit	Science Benefit
LUTI (KARI+)	<5m resol images of selected regions of lunar surface	Future landing site for the next lunar mission	Geology, Topology of the lunar surface
PolCam (KASI+)	First polarimetric map of near-/far-side of the moon	Effect of lunar soil on electro-mechanical parts of landing module	Characteristics of lunar regolith, Space weathering process
KGRS (KIGAM+)	Map of major elements (Mg, Ni, Cr, Ca, Al, Ti, Fe, Si, O, U, He-3, Water)	Better knowledge of space environments; Radiation environment for manned mission	Distribution of lunar resources; Water/mineral contents
KMAG (KHU+)	3D map of lunar magnetism, magnetic information of lunar swirls	Better knowledge of space environments	Origin of the Moon, Lunar magnetic evolution
DTNPL (ETRI+)	Technical demonstration payload for experimental testing of Disruption Tolerant Network technology in space	Effective communications in delay / disruptive condition in deep space exploration	N/A

Instrument-Directed Science Goals

□ LUTI

- Obtain high-resolution images of future landing sites (2nd stage Korean Lunar Exploration Mission)
- Target observation of interesting places on the Moon

□ PolCam

- Polarimetric imaging survey of the entire lunar surface except for the pole regions at various phase angles (0°~120°) and spectral bands (320, 430, 650nm)
- Investigate the characteristics of lunar regolith and Ti contents (varying latitude, longitude, mare & high-lands)

\square KMAG

- Investigate the origin of the crustal magnetism of the Moon (Impact/Dynamo, etc.)
- Characteristics of the lunar magnetic anomalies

☐ KGRS

- Map the distribution of major elements on the lunar surface and the beneath of the surface (up to 50cm)
- Geological and geochemical activities of the Moon
- Obtain radiation map of lunar environment

Ground Segment

Goal

- Establish Korea DSN Antenna(26~34m) compatible with Worldwide DSN in Korea
- Implement an Operational Ground Station for TC/TM & Science Data Processing

Payload Data Processing

- Multi-Payloads Data Storage & Pre-Processing
- Science & Image Data Processing & Management
- Payloads Data Calibration & Validation

DSN

- Multi-band Large Antenna Design
- Ranging for Moon & Deep Space
- Protocol Design compatible with NASA DSN/ESA ESTRACK
- Modulation/Demodulation & Coding for Deep Space

Simulator

Orbiter/Lander Simulation

Spacecraft Control

- CCSDS
- Telemetry Data Real-time Processing
- Telecommand Generation & Processing

Mission Planning

- Mission Req. Collection & Scheduling
- Mission Conflict Detection & Re-Scheduling
- Orbiter/Lander Timeline Generation & Distribution

Flight Dynamics & Navigation

- Tracking Data Processing
- Orbit Determination & Prediction
- Orbit Maneuver(TLI, MCC & LOI)
- Sensor Calibration

Thank you